

Drilling Fluid Properties The Language of Drilling Fluids

2020 Basic Drilling Fluids Workshop Houston, TX

Fluid properties are the language of drilling fluids

- Drilling Fluid Properties describe the fluid
- Drilling Fluid Properties tell us if the fluid is performing its functions
 - The properties tell us if the fluid is working for us or against us
- Understanding properties allows:
 - Building desirable fluid properties initially
 - Maintaining desirable fluid properties during use

Drilling Fluid Properties

- Viscosity
- Rheology
- Density
- Sand Content
- Filtration
- Calcium Hardness
- pH

Viscosity

- Thickness of the fluid
 - The only property we can see
- Defined as the fluids "Resistance to flow"
- Measured with a Marsh Funnel Viscometer
- Measured with a Rheometer
- Why?
 - Relates to hole cleaning, cuttings removal, borehole stability and pumping pressures

Marsh Funnel Viscosity

- Field measurement of the thickness of a fluid
- Reported in seconds per quart or seconds per liter

Marsh Funnel Reference Viscosity

Viscosity of water at 20°C (68° F)

26 sec/qt or 27 sec/liter

Marsh Funnel Viscosity

- Varies greatly, generally 30 to 75 seconds per quart
- Lower viscosity is desirable while maintaining suspension and gel strength
- Higher viscosities contribute to higher pumping pressures

Rheology

- Rheology is the study of how matter deforms and flows.
 - It is primarily concerned with the relationship of shear stress and shear rate and the impact these have on flow characteristics inside tubulars and annular spaces.
- Shear rate pump volume, and shear stress pump pressure, really describe
 Viscosity resistance to flowing when a force is applied
- Rheology is the science of viscosity
- Measured with a Rheometer
- Tells us what actually creates the viscosity we see

fann® Rheometers

Model 280 Field Rheometer

Model 35A Lab Viscometer

Rheological Properties

- Plastic Viscosity, PV
 - Determined by size, shape, and number of solids in the mud
 - Measured in centipoise
- Yield Point, YP
 - Measures the attractive forces between the particles in the mud
 - Measured in lb/100 ft²

Rheological Properties

- Gel Strengths
 - Measures the strength of the gelled structure of a drilling fluid while at rest
 - Measured at 10 seconds and 10 minutes
 - Reported in lb/100 ft²

Rheological Properties PV, YP and Gel Strengths

Why?

- PV and YP tells us what actually creates the viscosity we see
- Yield point defines carrying ability when fluid is in motion
- Gel strengths define suspension ability when fluid is static
- Gel strengths indicate the relative force required to initiate fluid flow
- PV and YP used for hydraulics and pressure loss equations

Density

- Mass per unit volume
 - Weight of the fluid
- Measured with a mud balance
- Why?
 - Used to calculate hydrostatic head
 - Used to calculate total solids content of the mud
 - Used to determine the efficiency of solids control equipment

Density

Mud Balance

- Reads in Pounds Per Gallon (lb/gal), Specific Gravity, Pounds per Cubic Foot, and PSI per 1000 Feet of Depth
 - Pounds per gallon (lb/gal) or Specific Gravity (SG) are the standard measurements for drilling applications

Density Reference

Water has a weight of 8.34 lb/gal or a Specific Gravity of 1.0

Calibrate Mud Balance With Water

Hydrostatic Head Calculation

Hydrostatic Head (psi) = Fluid weight (lb/gal) x depth (feet) x .052

Example:10 lb/gal x 100 feet x .052 = 52.0 PSI

Solids Content Calculation

* by volume - assumes 2.6 S.G. solids

Density

Desirable value - as low as possible

Sand Content

- Measures the sand sized particle content of the drilling fluid
 - Sand is a size and not a mineral for testing purposes
 - Sand size is defined as anything retained on a 200 mesh screen (greater than 74 microns)
- Measured with a Sand Content Test Kit
- Reported as % by volume
- Why?
 - Indicates the abrasive constituent of the drilling fluid
 - High sand content slows penetration rate
 - High sand content contaminates samples

Sand Content

Sand Content Test Kit

Sand Content

- Desirable values
 - As Low as Possible for all drilling applications
 - Less than or equal to 1% is preferred

Filtration Properties

Filtrate Volume and Filter Cake Thickness

Filtration

- Measured with API Filter Press
- Filtrate reported in milliliters/30 minutes
- Filter Cake reported in 32nds of an inch or millimeters
- Why?
 - Wallcake building
 - Borehole stability
 - » Filtrate is the water phase of the drilling fluid available to react with the formation and drilled solids
 - Protect the formation and formation fluids
 - Sample integrity
 - Minimize stuck pipe

Mechanics of Filtration

Filtration

Filter Presses

Filter Cake Deposition & Thickness

Filter Cake Deposition & Thickness

Filtration

- Low filtrate volumes generally denote tighter, firmer filter cakes
- Filtrate volume less than 15 milliliters / 30 minutes is desirable for most applications
- Filtercake less than 2/32 inch is recommended.

Total Hardness / Calcium Hardness

- Measures the concentration of cations contributing to total hardness
- Check the hardness of the make up water and mud filtrate
- Measured with calcium indicator strips or titrations
- Reported in milligrams per liter calcium (mg/l)
- Why?
 - Retards hydration of bentonite and polymers
 - Indicates contaminants picked up while drilling

Hardness

Total Hardness Test Strips

Hardness

Calcium Levels As Low As Possible Are Desirable Less Than 100 mg/l is Recommended

рН

- Indicates the Acidity or Alkalinity of a Fluid
 - A pH of 7 is neutral
 - Acidic environments range from 0 to less than 7
 - Alkaline environments range from greater than 7 to 14
- Check the pH of the make up water and mud filtrate
- Measured with pH strips, papers or meters
- Why?
 - Slightly alkaline is optimal for hydration of bentonite and polymers

Acid

Alkaline

рН= 0	Battery acid, Strong Hydrofluoric Acid
pH = 1	Hydrochloric acid secreted by stomach lining
pH = 2	Lemon Juice, Gastric Acid Vineger
pH = 3	Grapefruit, Orange Juice, Soda
pH = 4	Acid rain Tomato Juice
pH = 5	Soft drinking water Black Coffee
pH = 6	Urine Saliva
pH = 7	"Pure" water
	pH = 1 pH = 2 pH = 3 pH = 4 pH = 5 pH = 6

1	pH = 7	"Pure" water
1/10	pH = 8	Sea water
1/100	pH = 9	Baking soda
1/1,000	pH = 10	Great Salt Lake Milk of Magnesia
1/10,000	pH = 11	Ammonia solution
1/100,000	pH = 12	Soapy water
1/1,000,000	pH =13	Bleaches Oven cleaner
1/10,000,000	pH = 14	Liquid drain cleaner

Wide-Range pH Strips (0 To 14)

pH 8.5 – 9.5 is optimal for hydration of bentonite and polymers

Properties of Drilling Fluids

- Density
- Viscosity
- Rheological Properties
- Filtration Properties
- Sand Content
- pH & Calcium

- ➤ Mass/volume or fluid weight
- ➤ Resistance to flow
- > Flow Properties; PV, YP, Gel strengths
- Filtrate volume and Filter cake thickness
- ➤ Particles > 74 microns
- ➤ Chemical analysis

Questions?

