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Summary  
This document provides the technical underpinnings of the modeling approach taken to predict areas likely to 

have high nitrate concentrations across the State of Nebraska for the 2023-2024 Nebraska Department of 

Environment and Energy (NDEE) Water Quality Study. The model predictions represent the probability that 

nitrate concentrations will exceed certain threshold values in private domestic wells based solely on the model 

inputs listed in Table 1. In this study, threshold values of 3 mg/L, 5 mg/L, and 10 mg/L were modeled as 

representative of the background, elevated, and maximum contaminant level for nitrate in groundwater, 

respectively. Ultimately, this estimate is just one factor used in the web-based Geographic Information System 

(GIS) risk assessment tool for use by NDEE and agency partners. Regardless of the predicted risk, private 

domestic well owners are strongly encouraged to sample their well annually to properly assess their specific 

risk. Model construction and results offer valuable insights into the relationship between nitrate concentrations 

in Nebraska, common sources, hydrogeological factors, and land-use trends. Exploratory analyses and 

literature review were first conducted to identify potentially influential factors, then Boosted Regression Trees 

(BRTs) were trained to classify wells likely to exceed each threshold value. Finally, the BRTs were generalized 

for the internal NDEE GIS tool and evaluated against private domestic well samples from the free NDEE 

sampling effort. Model performance was strong for the testing and training data, and the model surfaces had 

acceptable performance compared to the fully independent private domestic well samples. However, additional 

work on the model is recommended to incorporate additional variables known to impact nitrate concentrations 

and reduce the false negative predictions (under prediction of nitrate concentration). A Model Card (based on 

the one proposed by Mitchell et al, 2019) is provided in Model Card 

Table 1. 
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Model Card 

Table 1.Model Card. 

Model Owner Nebraska Department of Environment and Energy (NDEE) 

Model Date November 2024 

Model Version 1.0 

Model Type Boosted Regression Trees (Classification) 

Spatial References Datum: North American Datum 1983 State Plane  
Projection: Lambert Conformal Conic 

Model Goals • Evaluate the relationship between nitrate concentrations, common point sources 

(limited to registered onsite wastewater treatment (OWT) facilities and animal 

feeding operations (AFO)), contributing land-use patterns, well construction, and 

hydrogeological factors.  

• Predict the probability that nitrate in a domestic well will exceed three values: a 
background concentration, an elevated concentration, and the Maximum 
Contaminant Level (MCL). Identify high-risk areas of nitrate in groundwater. 

• Incorporate model results into a private domestic well risk assessment GIS tool to 
be used by NDEE and select agency partners. 

Model Inputs  

Nitrate Well Samples The median nitrate sample from the Nebraska Groundwater Clearinghouse database for the 
period 2003-2019 was calculated at each well modeled. These median values were 
converted to binary variables at three threshold values: 3 mg/L, 5 mg/L, and 10 mg/L. 
Concentrations above each threshold were assigned 1 and below were assigned 0. Around 
each well, a 1500-meter buffer was generated and used to aggregate predictor variables 
that were not defined at the well level (such as nitrate concentration or well construction 
details). 

Well Construction Well construction variables were derived from the Nebraska Department of Natural 

Resources (NDNR) registered wells database. One-half screened interval depth, pumping 

water level, static water level, the presence or absence of a well seal, and well depth 

variables were included in the model. Location for each well was represented in the model 

using latitude and longitude as numeric variables. 

Land Use USDA Cropland Data Layer (CDL). Pixel counts and class percentages were calculated for 
each well buffer. The percentage of cultivated soybeans and corn were included in the 
model. 
 
USGS 30-meter irrigated acres (LGRIP30) 2023 Release. The percentage of irrigated and 
rainfed crops in each well buffer were included in the model. 
 
Historic fertilizer data assembled by the USGS, derived from USDA National Agricultural 
census, were used to estimate application rates at the county-scale and joined to wells 
included in the model.  
 
Municipal boundary information from Nebraska Map, a census derived product, was used to 
represent the potential impacts of municipal wastewater collection systems and other 
potential urban sources of nitrate, such as lawn fertilizer. Nebraska Map is managed by the 
Nebraska Geographic Information Office (GIO). 
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Hydrogeological Soil infiltration data from Soil Survey Geographic Database (SSURGO) was sampled at 30-
meter resolution and aggregated by mean value inside each well buffer. The mean vertical 
soil infiltration (ksat) for each well was used in the analysis. 
 
Streams have an impact on nitrate concentrations where surface and groundwater are 
interconnected. The distance to the nearest stream was calculated for each well buffer. 
Stream data came from the NDEE Title 117 waterbodies database.  
 
Reservoirs and lakes can also impact nitrate concentrations much like streams. Similarly, 
the distance to the nearest Title 117 lake was calculated for each well buffer.  

Model Inputs  

Point Sources Registered OWT facilities from the NDEE integrated information system (IIS) were 
aggregated into well buffers as a per square mile density and as a distance measured from 
the buffer edge for each well. 
 
Animal Feeding Operation (AFO) facilities from the NDEE IIS were aggregated into well 
buffers in the same manner as OWT facilities, with the addition of a facility count metric for 
AFOs in each well buffer. Animal facilities were also represented by livestock watering wells 
data from the NDNR registered wells database. Watering wells may capture areas where 
animals graze and smaller operations not permitted under Title 130. 

Model Outputs Probability that the median nitrate concentration will exceed a background concentration, 
elevated concentration, and the MCL (based on model inputs within a 1500-meter radius of 
each well), confusion matrix, variable influence, partial dependence, variable interaction, 
evaluation statistics, and associated plots. Predictor variables were aggregated to a half-
mile grid surface across Nebraska and passed to the trained models to generalize the 
predictions for use in a GIS tool for use by NDEE and key partners. 

Model Evaluation Models were optimized to maximize Matthew’s Correlation Coefficient (MCC), Sensitivity, 
Specificity, and Overall Accuracy calculated from the Confusion Matrix for each model. 

Values are reported for testing data. MCC values were between 0.5 – 0.51. Sensitivity was 
from 55 – 88%. Specificity was from 59 – 92%. Overall Accuracy was from 78 – 81%. Model 
surfaces were compared to an independent set of domestic well samples collected in 2023-
2024. Evaluation metrics were lower across the board for the model surfaces, but MCC 
(0.20 – 0.28), sensitivity (34 – 60%), specificity (68 – 87%), and overall accuracy were 
acceptable (65 – 79%) to recommend model results for incorporation into an internal tool for 
NDEE and key partners.  

Credits Author: Bridger Corkill 
Year: 2024 
Affiliation: Nebraska Department of Environment and Energy 

Intended Use 
 

This model is intended to supplement a risk assessment tool for private domestic wells. The 
model considers many factors that may influence the nitrate level around a private domestic 
well. Estimating the probability that nitrate will exceed the modeled threshold concentrations 
can help assess risk for private domestic wells located in areas where nitrate samples are 
unavailable. Nitrate concentrations were modeled based on a range of threshold 
concentrations that reflect a low, medium, or high-risk potential to private domestic well 
owners. The model is not intended to predict the exact concentration at any one well 
location. Rather, the goal is to provide a reasonable baseline assessment of risk potential 
given the available data and model inputs. Additional risk factors will be included in the GIS 
tool. This model is not intended as a primary decision-making tool, and will be used 
exclusively by NDEE and select agency partners.  
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Introduction 
One objective of the water quality study, conducted by the NDEE, was to develop a model identifying high-risk 

areas of nitrate in groundwater. Results of this modeling effort are intended to supplement a risk assessment 

Geographic Information System (GIS) tool that was developed during the water quality study. This tool assists 

NDEE and select agency partners in evaluating the potential risk of elevated nitrate in a domestic well. In the 

GIS tool, the user will enter a well location, and the tool queries information for that location to calculate a risk 

index and create a report for the user. Predictive model results are one part of this risk index and are intended 

to provide an estimate of how likely a private domestic well owner is to find elevated nitrate concentrations in 

their well, based on contributing factors and existing nitrate sample data. Ultimately, the only way to ensure a 

safe supply of drinking water is to have it tested.  

Previous studies conducted in coordination with the U.S. Geological Survey (USGS), such as Nolan et al. 

(2014) and Wheeler et al. (2015), have employed machine learning (ML) methods to predict nitrate 

concentrations, including the probability that N as Nitrate will exceed several thresholds, in private domestic 

wells. Similar studies conducted by USGS in Wisconsin (Wellman and Rupert, 2016; Borchardt et al., 2021) 

use logistic regression analysis to predict the risk of domestic well contamination by several contaminants, 

including nitrate. Traditional regression methods were not used in this study because the nitrate data used to 

train the models does not meet many of the underlying assumptions for a regression model, such as Gaussian 

distribution of model residuals and a homogenous relationship between nitrate and predictor variables across 

the model space, i.e., the state of Nebraska. ML algorithms do not require a particular distribution or assume 

the data has a homogenous relationship across the model space. They also benefit from large, multi-

dimensional datasets (Breiman et al., 1984). Because of these advantages, this study uses a forest-based 

classification algorithm, BRTs, to predict whether a well is likely to exceed several threshold values for nitrate 

concentration based on well characteristics, geologic conditions, land-use, and some common potential 

sources of nitrate. Predictions were made for wells considered representative of domestic well construction in 

Nebraska. Figure 1 shows the nitrogen cycle. 
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Figure 1. Nitrogen Cycle Conceptual Diagram. 

Nitrogen takes multiple forms in the environment and comes from both organic and inorganic sources. Nitrogen 

typically enters the soil as ammonia where it is nitrified to nitrate under oxic conditions. Nolan and Hitt (2002) 

report that background concentrations in undeveloped forested areas of the United States are around 1 mg/L. 

Levels measured slightly higher in rangeland and grassland, between 2 and 3 mg/L. Further studies of the 

High Plains Aquifer (McMahon, 2007) have generally agreed that 4 mg/L is the highest observed “relative” 

background concentration in the system. Background and relative background concentrations of nitrate are an 

area of debate in literature. Nitrate concentrations between 0.5 and 3 mg/L are considered a transitional range 

between natural background and anthropogenic contamination (McMahon et al., 2007). For this study, a 

conservative background level of 3 mg/L was assumed based on Nebraska land-use trends. Anhydrous 

fertilizer and livestock manure application to cropland are two primary sources of nitrogen in the soil and 

streams (Spalding and Exner, 1993). Additional sources include human and livestock waste, certain industrial 

facilities, and wastewater treatment facilities (ATSDR, 2017).  

Inorganic and organic nitrogen (as ammonia) are nitrified in the soil to nitrite and then nitrate under oxic 

conditions. In the High Plains system, dissolved oxygen levels are such that nitrate can persist for decades 

(Spalding and Exner,1993; McMahon et al., 2007). Nitrate management practices can reduce levels over time, 

but in Nebraska levels may still be rising (Exner, 2014). When nitrate is not biologically fixed—by plants or 

microorganisms—it leaches through the unsaturated root and vadose zone eventually reaching groundwater 

(Malakar et al., 2023). The time it takes for nitrate to reach groundwater is related to the thickness of the 

vadose zone, the depth to groundwater, soil characteristics, precipitation, and irrigation (Wells et al., 2018; 

Malakar et al., 2023). In areas where groundwater and surface water are interconnected, groundwater can be 

a source of nitrate in streams or vice versa (Green et al. 2018). Domestic wells are more likely to tap shallower 
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formations and are often constructed near onsite wastewater treatment systems, cropland, and animal feed 

operations which can all contribute to contamination (Wheeler et al., 2015; Wellman et al., 2016; Borchardt et 

al., 2021). In addition to permitted animal feed operations and onsite facilities, livestock watering wells 

registered with the NDNR were incorporated into the model to represent areas where animals may graze that 

are not captured by a single facility location. 

The water table varies throughout the year and upper levels of an aquifer may have different nitrate 

concentrations than deeper, older groundwater. In areas where groundwater and surface water are 

interconnected, flows from groundwater to surface water may act to ‘flush out’ excess nitrate into streams and 

rivers (Snow and Miller, 2018; Malakar et al., 2023). Seepage from losing reaches and reservoirs may have the 

opposite impact. Additionally, the varying geology across Nebraska dramatically changes the rate at which 

nitrate reaches groundwater (Spalding, 2001; Wells, 2018; Cherry, 2019).  

Nitrate is more rapidly transported to groundwater under irrigated lands than non-irrigated lands. Irrigated 

crops typically receive more fertilizer application than non-irrigated crops and therefore have a higher nitrate 

soil concentration contributing to nitrate leaching (Spalding 2001; Exner 2014; Malakar et al., 2023). Excess 

water from irrigation not taken up by crops pushes nitrate through the unsaturated vadose zone. Irrigation 

wells, which may be constructed with gravel pack along their entire casing, can act as conduits for water high 

in nitrate to move rapidly into lower levels of the aquifer. Wells that are screened or gravel packed through 

multiple formations can cause aquifer comingling (Driscoll, 1986). The impact of agriculture was captured in 

this study using percentage of irrigated cropland, crop-percentages, cumulative nitrogen application estimates, 

and livestock facility data. The 30-meter irrigated acres (LGRIP30) product produced by the USGS was used to 

estimate the percentage of irrigated area around each well. It is nominally a 2015 product (Teluguntla, 2023); 

however, because of the permitting requirements and water management by the Nebraska Natural Resources 

Districts, the total irrigated acres over the study period should be relatively constant. Additionally, investigation 

of the cropland data layer (CDL) in Nebraska showed little change over time in the dominant crop classes. 

Well samples for 281 water quality indicators, including nitrate, are available to the public in Nebraska via the 

Nebraska Quality Assessed Agrichemical Clearinghouse (the Clearinghouse). The Clearinghouse is a 

collaborative effort between the NDEE, the University of Nebraska-Lincoln Conservation Survey Division (UNL 

CSD), and the Natural Resources Districts of Nebraska (NRDs). Nitrate samples in this study were all sourced 

from and are publicly available on the Clearinghouse. Samples have been collected from monitoring, irrigation, 

domestic, public water supply, commercial/industrial, livestock, and groundwater source heat pump wells since 

mid-1974 to present. Each sample is given a quality flag based on the methodologies used for sampling and 

the laboratory method. The flag depends on the amount and type of quality assurance/quality control that was 

identified in obtaining each sample. At the time of the study, data for the years 2020 to present is incomplete. 

No data quality filter was applied to nitrate samples used to train and test the models. 

Point sources of nitrate, such as failing onsite treatment systems, are an important source to consider for 

estimating the nitrate risk in a domestic well (Nolan et al., 2014; Wheeler et al., 2015). OWT facility data from 

Title 124 permit records were used to calculate the impact of OWTs on nitrate. There are important limits to 

this record. Title 124 Onsite Wastewater Systems requires registration of any OWT constructed, reconstructed, 

altered, modified, or otherwise changed by a certified professional, professional engineer, or registered 

environmental health specialist since January 1, 2004. There are currently approximately 29,600 registered 

OWT, but many OWTs are not registered, and some OWTs are exempt from registration. Data considered for 

inclusion in the predictive model are summarized in Table 2. Other point sources, such as those regulated by 

NDEE’s release assessment program, did not have the data quality needed for inclusion in the model.  
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Table 2. Datasets Considered for the Predictive Nitrate Model. 

Dataset Agency & Year Description 

Clearinghouse Well 
Samples 

NDEE, UNL CSD, 2024 Nitrate samples from the Clearinghouse from Non-
Public Water Supply wells for the years 2003 to 2023 
were used as model inputs. Because of data gaps in 
the Clearinghouse, this is nominally a 2003-2019 
product. The median nitrate concentration from all 
samples taken over the study period was calculated at 
each well. 

Domestic Well 
Samples from the 
Free Sampling Effort 

NDEE, 2024 Results from the NDEE free sampling effort were used 

as an independent testing set to evaluate model 

performance. These results are from samples collected 

by private well owners, per instructions they received 

with their nitrate test kit from the Nebraska Department 

of Health and Human Services (NDHHS) Public Health 

Environmental Lab. Some of these samples may have 

been collected following reverse osmosis or other 

treatment units and they may not all be representative 

of raw well water. 

National Land Cover 
Dataset (NLCD) 

USGS, 2022 Land-use trends and data were analyzed for 
relationships to nitrate levels in Nebraska. Data were 
aggregated to well buffers by pixel counts, and 
percentages for each land use type were compared to 
nitrate levels. In the models, LGRIP30 and the CDL 
were used instead of NLCD data. 

Depth to 
Groundwater 

NDEE, 2024 Groundwater elevations, based on the regional 

Nebraska hydrologic models, were calculated for the 

spring season and generalized across the state. These 

elevations were not incorporated into the modeling but 

may benefit future efforts.  

Well Construction 
Information 

NDNR, 2024 Well construction information (e.g., well depth and 

construction year) for wells in the Clearinghouse, 

provided by NDNR, was evaluated for relationships to 

nitrate levels. Well construction variables were derived 

from the NDNR registered wells database. Location, 

one-half-screened interval depth, pumping water level, 

static water level, presence or absence of a well seal, 

and well depth variables were included in the model. 

Location for each well was represented by latitude and 

longitude as numeric variables 

Soil Survey 
Geographic 
Database (SSURGO) 
Soil Properties 

NRCS, 2023 The SSURGO database was used to generate 
representative saturated soil infiltration rates (ksat) for 
each well buffer distance. Other SSURGO variables 
recommended for future modeling are discussed in the 
conclusions and recommendations section.  

Cropland Data Layer 
(CDL) 

USDA, 2022 The CDL was analyzed for relationships to nitrate 
levels and change over time. The percentage of corn 
and percentage of soybeans was calculated inside 
each well buffer and included in the modeling. Other 
notable classes, such as alfalfa and winter wheat were 
considered but ultimately excluded and covered by 
LGRIP30 data. 
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Dataset Agency & Year Description 

LGRIP30 USGS, 2023 USGS 30-meter irrigated acres (LGRIP30) product 
was used as a model input. The percentage of 
irrigated and rainfed crops in each well buffer were 
included in the model. 

Nebraska Permitted 
Irrigated Acres 

NDNR, 2023 The irrigated acres from groundwater were queried 
from the Permitted Irrigated Acres data layer 
maintained by the NDNR. LGRIP30 was selected to 
represent irrigated acres in the dataset instead of 
this product. 

Registered Onsite 
Wastewater 
Treatment (OWT) 
Systems 

NDEE, 2023 Title 124 registered OWT facilities were aggregated 
by well buffer as count, distance, and density 
values. Domestic, industrial, and commercial 
facilities were included.  

Registered Animal 
Feed Operations 
(AFOs) 

NDEE, 2023 Animal feed operations (AFOs), as defined by Title 
130, were aggregated into well buffers by facility 
count, distance, and density values. Facility data 
were retrieved from the NDEE IIS. 

Livestock Watering 
Wells 

NDNR, 2023 Stock wells were aggregated by count into well 
buffers and as a per square mile density value 
inside each buffer.  

Historic Fertilizer 
Application Rates 

USGS, 2006 County level fertilizer application data from USGS 
for the years 1987 to 2006 was normalized over the 
land area in each county and then joined to wells as 
a kg/land-acre rate value.   

Groundwater 
Release 
Assessments 

NDEE, 2024 Release assessment data is collected by NDEE but 
was not in a form that could be reliably included in 
the modeling. 

Permitted Nitrate 
Precursor Storage 
Facilities 

NDEE, EPA CAMEO, 2024 Tier two storage facilities are required to report 
through NDEE to the EPA on chemical storage 
facilities. These data were ultimately excluded from 
the model.  

Nebraska Municipal 
Boundary Data 

Census 2020; NE Geographic 
Information Office (GIO), 2024 

Municipal boundaries in Nebraska are derived from 
the 2020 census and updated by NGIO using state 
data from the Department of Revenue and 
annexation ordinances from cities. Municipal 
boundaries were used in the models to represent 
urban sources of nitrate, such as fertilizer runoff and 
wastewater collection systems. 

Title 117 
Waterbodies 
Database 

NDEE, 2024 NDEE maintains a database of regulated surface 
waters under Title 117. Streams, lakes, and 
reservoirs can all impact nitrate in groundwater 
when they are hydrologically connected. Data on 
Title 117 defined streams and lakes that were 
incorporated into the models as distance variables. 

Title 123 
Wastewater 
Treatment Facilities 

NDEE, 2024 Permitted wastewater facilities defined by Title 123 
were considered for inclusion in the model but were 
ultimately excluded and the impact of municipal 
treatment and collection systems was represented 
using the municipal boundary data. 
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Methods 

Variable Aggregation 
Nitrate well sample data from the Clearinghouse for the period 2003 to 2019 from non-PWS wells 300 feet or 

less in depth were used in the analysis. Because some wells have been sampled multiple times, the median 

concentration at each well was calculated prior to analysis. 1500-meter radius buffers around each well were 

created using ArcGIS Pro (Arc version 3.1) and used to aggregate variables. Buffer distances in this study 

were comparable to those used in previous studies (Tesoriero and Voss, 1997; Nolan et al., 2014; Borchardt et 

al., 2021). Variables can be broadly categorized as either aggregated at the well level or buffer level. Well 

construction information and nitrate sample data were joined to each well, while land-use variables, potential 

sources, distance features, and hydrogeologic features were aggregated in each well buffer. 

Preliminary variables were assembled based on related modeling studies (Nolan et al., 2014; Wheeler et al., 

2014; Wellman et al., 2016), potential sources of nitrate (ATSDR, 2015), historic information on nitrate in 

Nebraska (Spalding and Exner, 1993; Litke, 2001; McMahon, 2007), data availability, and consultation with 

modeling, hydrology, and engineering experts. A list of all datasets considered for inclusion is presented in 

Table 2. Notable exclusions from the model are discussed in the recommendations section for future work. 

Well construction information, including well depth, static water level (SWL), pumping water level (PWL), 

drawdown (the difference between SWL and PWL), depth to the mid-point of the screened interval, length of 

gravel pack, presence of a seal, and pump rate were derived from the NDNR Registered Wells Database. 

Construction data are collected when the well is registered and may not reflect changes to water level, well 

depth, or pump level. Where information on well construction was unavailable, the variable was set to Null. 

Except for drawdown, gravel pack length, and pump rate, all available construction data was used in the 

modeling. 

Hydrogeologic variables including vertical soil infiltration rate (Ksat), aquifer boundary data, stream location, 

and depth to bedrock geology were considered for inclusion in the model. Ksat was calculated from the USGS 

SSURGO dataset by first resampling the 10-m product to 30-m resolution and then zonal statistics were 

calculated inside each well buffer. The mean Ksat value was selected as the representative statistic and 

included in the model. Additional variables from the SSURGO database, such as hydric rating, drainage class, 

and soil geochemical properties were considered for inclusion. However, these data were not in a format that 

was usable in the modeling effort at time of writing. A discussion of additional SSURGO factors for the model is 

presented in the conclusions and recommendations. The distance to the nearest stream and nearest lake, as 

defined by Title 117, was calculated for each well buffer and included in the model. Aquifer boundary data were 

ultimately excluded from the model but may be a good option to divide the state into regions for future 

groundwater modeling efforts.  

Distances between each well buffer and potential point-source datasets were calculated and used as 

explanatory variables. Models include only onsite wastewater treatment facilities, livestock watering wells, and 

permitted livestock facilities as listed in Model Card 

Table 1. A discussion of missing facilities data for potential nitrate sources is provided in the conclusions and 

recommendations section. No maximum distance was established. Facilities inside the buffer had distance 

equal to zero. Facility counts by type inside each buffer were also calculated for livestock facilities and 

livestock watering wells. Density for these point facilities was calculated as a facility per square mile value 

using the focal statistics tool in ArcGIS Pro (Version 3.1) using a 6-mile moving window. Mean facility density 

values were aggregated into each well buffer distance using the Zonal Statistics tool in ArcGIS Pro 3.1. 

Livestock watering well data from the NDNR registered wells database was also used to calculate a well per 

square mile value across the state to represent areas where livestock may be moved to that are not captured 

by permitted facility data. 
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Land-use data from the National Land Cover Dataset (NLCD), an irrigated acres product derived from NLCD 

called LGRIP30 (Teluguntla et al., 2023), and the CDL (USDA NASS, 2023) were evaluated for inclusion in the 

model. The NLCD land-cover dataset did not have adequate variance to include as a model input, a vast 

majority of the land in Nebraska is either grassland or cropland. For each land use dataset, the 30-m products 

were aggregated into the 1500-meter well buffer and pixel statistics were calculated summarizing the land use 

percentages. LGRIP30, including irrigated and rainfed cropland data, and the CDL, including only the two 

largest classes, corn, and soybeans, were included in the models. The CDL from 2008 was used in the 

modeling. Analysis of the CDL in Nebraska showed little change in major crop classes over time.   

Nitrogen application rates were estimated by USGS at the county level for the years 1988 to 2006 (Spahr et 

al., 2010). Previous studies discussed the impact of legacy fertilizer application on present-day nitrate levels 

(Exner, 2014). This study seeks to empirically account for this legacy nitrogen input based on the 2006 USGS 

county level estimates. A cumulative nitrogen application rate was calculated as follows: farm and non-farm 

tonnage was summed across years, then the sum of nitrogen applied in kilograms (kg) was divided by the total 

land area in each county (in acres) to estimate the cumulative application per acre. These county level values 

were joined to each well. As with the CDL, using values from 2006 is reflective of the lag-time between 

nitrogen application at the surface and elevated groundwater nitrate levels (Wheeler et al., 2015; Cherry et al., 

2019). 

Prior to modeling the wells with nitrate sample data from the Clearinghouse, data were randomly divided into 

testing and training groups. Training data are used in the model training. Testing data are not used in model 

training and are instead used to evaluate model performance (Breiman et al., 1984). Two-thirds of the sample 

data were set aside for training and one-third for testing. To ensure a repeatable split, wells were sampled in R 

(Kuhn, 2020) using a fixed seed. The same seed was used across models.  

During the 2023-2024 water quality study, NDEE offered free nitrate test kits to private domestic well owners. 

Results from the NDEE free sampling effort were used as an independent testing set to evaluate model 

performance. These results are from samples collected by private domestic well owners per the instructions 

they received with their nitrate test kit from the Nebraska Department of Health and Human Services (NDHHS) 

Public Health Environmental Lab. Some of these samples may have been collected following reverse osmosis 

or other treatment units and they may not all be representative of raw well water. Because not all construction 

variables were known for these wells, they were used to evaluate the performance of generalized model 

results discussed later in this section. Samples were geocoded using ArcGIS Professional (Version 3.1, 2023) 

To alleviate data quality issues, duplicate addresses, P.O. boxes, points of interest, and street centerlines were 

removed from the set of geocoded points to calculate model evaluation metrics.  

Boosted Regression Trees (BRTs) 
Previous water quality investigations have used regression (Hirsch et al., 2010; Garcia et al., 2017), logistic 

regression (Black et al., 2023; Wellman and Rupert, 2016; Gross and Low, 2013; Lombard, et al. 2021), and 

machine learning methods like those employed in this study (Nolan et al., 2014; Nolan, 2015 et al.; Lombard et 

al., 2021; Knierim et al., 2022) to predict water quality in surface and groundwater. Logistic regression and 

regression were explored for predicting nitrate concentrations in this study, but the nitrate data available violate 

several important assumptions of traditional regression methods such as a Gaussian distribution of the model 

residuals and a uniform relationship between predictor variables and response variable across the model 

space. Additionally, machine learning methods had stronger predictive power during testing.  

Random forest models use a set of tree predictors to classify data or fit regression coefficients to predict a 

continuous variable (Breiman et al., 1984). Forest-based models have been applied to water quality predictions 

in nitrate investigations (Nolan et al., 2014; Wheeler et al., 2015), and to predict other regulated contaminants 

like arsenic and manganese (Lombard et al., 2021; Knierim et al., 2022). Variables were aggregated in ArcGIS 

Professional (Version 3.1, 2023) and models were tuned in R using the dismo and gbm packages (Friedman, 
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2002; Hijmans, 2023). In this study, classification was chosen over continuous prediction. For the purposes of 

this investigation priority was placed on predicting whether a private domestic well is likely to exceed threshold 

concentrations and pose a health risk rather than predicting specific concentrations at a given well. 

Forest-based classification uses combinations of input variables and an element of randomness to predict 

class membership (Breiman et al., 1984). Decision ‘trees’ based on a random sampling of predictor variables, 

vote on the most popular class for a given input vector. BRTs are a type of forest-based regression model that 

has been employed in species distribution modeling (Elith et al., 2008; Yu et al., 2020) and water quality 

analysis. Two studies with similar hydrology and investigation goals looked at relatively shallow, unconfined 

aquifers in the California Central Valley (Nolan et al., 2014) and the State of Iowa (Nolan et al., 2015) using 

forest-based classification and/or BRTs. Contaminants like arsenic (Lombard, et al. 2021) have also been 

modeled using BRTs. In this study, nitrate well samples were classified into binary variables at three 

concentration thresholds: 3 mg/L, 5 mg/L, and 10 mg/L. These values represent the upper-end background 

concentration in unpopulated grassland areas (Nolan and Hitt, 2003), an elevated level of nitrate, and the Safe 

Drinking Water Act (SDWA) Maximum Contaminant Level (MCL), respectively (US EPA, 1991). The BRT 

models in this study were trained to predict the probability that nitrate would exceed each concentration 

threshold.  

BRTs are made up of many simple tree-predictors, which in aggregate, are optimized for predictive accuracy. 

This can be analogously thought of as many rules of thumb may be more practical than a single, complex rule 

to describe every situation (Elith et al, 2008). In the classification case, trees predict the most likely class 

instead of fitting a continuous response. Boosting, in BRT, is the combination of tree-predictor models which 

‘boosts’ the strength of the constituent trees (Friedman, 2003). BRTs are well suited to modeling various 

predictor variables (continuous, categorical) and are robust to missing data (Breiman et al., 1984).  

Each tree’s contribution to the overall model is governed by the learning (shrinkage) rate. Generally, model 

performance is more robust using a low (slow) value, because of the optimization procedure. “Boosting is a 

form of functional gradient descent,” where the unexplained deviance in the model is minimized at each 

stepwise addition of trees to the forest (Elith et al., 2008). A smooth descent along the curve leads to more 

stable model behavior (Friedman, 2003). Variable influence is calculated for the predictors in BRT models in 

the gbm package (Friedman, 2002) and is a measure of how frequently a variable is selected for splitting. 

Variables that contribute to a greater reduction in error are weighted more heavily by the measure. Relative 

variable influence for the model sums to 100%. Higher variable influence indicates that the variable is strongly 

influential to model predictions (Friedman, 2002). Percentage of relative influence does not equal percentage 

contribution to response variable. That is to say, the percentage influences reported by the BRT models do not 

correspond to percent contribution to nitrate levels in groundwater. Rather, they indicate how strongly each 

contributing variable is related to predicting the nitrate risk. Collinear factors, while largely unproblematic for 

BRT efficacy, do impact the calculations for variable influence and should be considered when interpreting the 

results (Dormann et al., 2013; Belitz and Stackelberg, 2021). 

Tree complexity refers to the number of variable interactions possible in each decision tree constituent of the 

model. A complexity of 1 would be a “stump” with one variable and two terminal nodes. The addition of all 

these stumps would make up the BRT, where each stump casts its vote for the most likely class. A complexity 

of two allows for two-way interaction, and so forth (Elith et al., 2008; Breiman et al., 1984). Variable interaction 

can be tabulated and plotted from BRT models because interactions are inherent to the structures of decision 

trees. As splits in the tree progress, later predictor variables are dependent on the branches of earlier 

predictors. In this way, variable interaction is a part of the method (Breiman et al., 1984). By holding other 

predictors to mean values, partial variable influence plots can be developed for the response variable in the 

gbm package (Friedman, 2002). These partial influence plots offer insight into the shape and relative 

relationships between the predictor variables and the response. Because of the method for their creation, 
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partial dependence plots should not be interpreted as individual models or used to interpolate specific values 

(Friedman, 2002). 

Interaction can also be calculated and visualized between variables in the BRT ensemble. Variable interaction 

plots, created using the same principle as partial influence plots, can be created to show the interactions 

between influential factors in the model (Friedman, 2002). Like partial dependence, these plots are not 

intended to perfectly represent the relationship between nitrate and each predictor variable, but they do offer 

insights into how model variables interact with each other. For instance, it is expected that irrigation and soil 

infiltration rate will impact the rate at which nitrate reaches groundwater (Exner, 2014; Wells et al., 2018; 

Malakar et al., 2023), and the interaction between these factors in the model may shed additional light on that 

relationship. 

Evaluation Metrics 
Models were evaluated using Matthew’s Correlation Coefficient (MCC), sensitivity, specificity, and total 

accuracy. A confusion matrix, with associated statistics, was calculated for each classification model using the 

R package caret (Kuhn, 2023). MCC was the primary evaluation metric, and all measures used to evaluate 

model performance are summarized in Table 3. There are four possible outcomes for binary classification in 

confusion matrix calculations: true positive (TP), true negative (TN), false positive (FP), and false negative 

(FN). True positives refer to the samples that were above the threshold concentration accurately classified by 

the model. True negatives are the samples that were below the threshold concentration accurately classified 

by the model. False positives indicate a model prediction of above the threshold, but an actual value below. 

False negatives are the samples that were above the threshold concentration incorrectly classified as below. 

False negatives are more problematic to this study than false positives because a false positive may 

encourage someone to test their well, while a false negative may engender a false sense of safety. 

In binary classification, MCC provides a measure of how model predictions compare to the performance of 

random predictions (Matthews, 1975, Chicco, 2021). MCC ranges between -1 and 1 where -1 indicates discord 

between predictions and actual values, 0 indicates predictions no better than random, and 1 indicates perfect 

agreement between model and observation. Positive MCC values can be interpreted on the same scale as 

Pearson’s R (Chicco, 2021, Sokal et al., 1969).  Sensitivity is the percentage of samples above the threshold 

concentration correctly classified by the model. Specificity is the percentage of true negatives predicted by the 

model out of total negative samples (Sokal et al., 1969). Accuracy, sometimes called overall accuracy, is a 

measure of sensitivity and specificity. Evaluation metrics were calculated using the following equations:  

𝑀𝐶𝐶 =  
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑃
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑁
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 

Where TP stands for true positive, TN stands for true negative, FP stands for false positive, and FN stands for 

false negative. MCC was selected as the primary evaluation metric because it is robust to lopsided datasets 

and appropriate for binary classification problems (Chicco, 2021).   
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Table 3. Evaluation Metrics Used to Evaluate Models. 

Diagnostic Type of Model Description 

Accuracy 
Binary 

Classification 

Accuracy is a measure of Sensitivity for all classes, in the 
case of binary classification, accuracy is the same across 

classes (Sokal et al., 1969).  

Sensitivity 
Binary 

Classification 

Sensitivity is the percentage of samples that fall above the 
threshold value correctly classified by the model (Sokal et 

al., 1969).  

Specificity 
Binary 

Classification 

Specificity is the percentage of samples that fall below the 
threshold value correctly classified by the model (Sokal et 

al., 1969). 

Matthews Correlation 
Coefficient (MCC) 

Binary 
Classification 

Also known as the mean square contingency value or phi 
statistic, the MCC is a measure of agreement between 
predicted and actual values. In binary classification, it is 

akin to comparing the model to a coin flip. Interpretation of 
MCC on the order of Pearson’s R correlation, where 1 

indicates perfect agreement between model and 
observation, -1 is disagreement, and 0 is no better than a 
random prediction (Matthews, 1975 and Chicco, 2021). 

Generalizing Model Results for the GIS Tool 
A key goal of this modeling investigation is to supplement a web-based GIS tool for NDEE and select agency 

partners to help evaluate the risk of elevated nitrate concentrations. In the ideal case, this tool would host the 

model weights and predictor datasets and predict to the user-entered well location based on the local factors. 

Because of technical limitations, this is not possible in the near term and an alternate product covering all 

possible input locations for the tool, i.e., a statewide product, is highly desirable. 

Model results from each BRT were generalized across the state to form a smooth prediction surface by first 

aggregating the predictor variables to an arbitrary half-mile grid surface in the ArcGIS Professional (Version 

3.1) software suite, then importing the data into R where trained model files predicted to the surface, and finally 

mapping the results. Variable aggregation followed the same procedure as the wells data with one notable 

exception. All available well construction data from the NDNR for active, registered wells was used to create 

the grid surface, including wells that were not sampled for nitrate or included in the model data.  
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Data Exploration 
Nitrate samples from the Clearinghouse and variables summarized in Table 2 were explored prior to final 

aggregation strategy and modeling. This section summarizes the important elements of the data exploration. 

Because some wells have been sampled multiple times during the period 2003-2019, median nitrate 

concentration was calculated for each well and is mapped in Figure 2. Observed concentrations were 

converted to binary responses as described in the methods section. Training wells are shown in Figure 3, 

symbolized based on the 10 mg/L MCL threshold. GBM-MCL stands for Gradient Boosted Model – Maximum 

Contaminant Level. Each model is named following this convention which is used in figures throughout the 

text. Wells below that value are symbolized in navy and wells above the MCL are symbolized in yellow. Figure 

4 shows the wells used to test the model symbolized in the same fashion.  

 

Figure 2. Predictive Nitrate Model Input: All Well Locations Used to Train and Test Each Model by Median Nitrate Concentration. 
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Figure 3. Predictive Nitrate Model Input GBM-MCL Well Locations Used to Train the Model and the Observed Nitrate Concentration as 

a Binary Threshold Variable. 
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Figure 4. Predictive Nitrate Model Input GBM-MCL Well Locations Used to Test the Model and the Observed Nitrate Concentration as a 

Binary Threshold Variable. 
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Figure 5. Median Nitrate Concentration Distribution at Wells Included in the Model. 

Because of siting, design, and sampling requirements, Public Water Supply (PWS) wells are biased to lower 

nitrate levels and were excluded from modeling. See Table 4 for a summary of the well sample data in the 

Clearinghouse organized by well type. It shows the wide range in sampling patterns and concentrations 

between well classes. This range in concentrations between well types shown in Table 4 can be explained in 

part by the more stringent construction standards for PWS wells than other types of wells. Additionally, PWS 

wells must meet SDWA standards and those that do not are typically decommissioned, blended, or treated. 

This biases the PWS data toward lower nitrate concentrations overall. Sample data from PWS wells were 

excluded from training and testing data because it is not representative of nitrate levels in private domestic 

wells, the target of this modeling effort. 

Table 4. Summary statistics for nitrate samples in the clearinghouse by well type from 2003 to 2019.  

Clearinghouse Well 
Type 

Mean Nitrate 
Concentration (mg/L) 

Median Nitrate 
Concentration 

(mg/L) 

Sample 
Count 

Wells 
Sampled 

Livestock Watering 12.43 8.40 522 105 

Domestic 7.21 2.50 5,676 1,423 

Irrigation 9.35 6.50 51,969 13,504 

Monitoring 7.33 4.10 19,021 1,697 

Public Water System 4.04 2.94 42,631 3,064 

All Wells 7.05 4.5 119,992 19,768 

Well Construction 
Well depth, pumping water level (PWL), static water level (SWL), half the distance to the screened interval, the 

presence or absence of a surface seal, the length of gravel pack, and construction year were factors evaluated 



   

 

17 

against the nitrate concentration in all sampled wells. Construction year was assigned a binary variable 

corresponding to wells built before or after state construction standards were established in 1988 and was 

ultimately insignificant in modeling. Only wells 300 feet or shallower were modeled. Domestic wells in 

Nebraska do not typically exceed 300 feet in depth. Figure 6 shows the depth of active, registered domestic 

wells in the state. All Clearinghouse samples included in the model are plotted against half the depth to the 

screened interval in Figure 7. Well depth, depth of the screened interval, PWL, and SWL, are all proxy 

measures for an important nitrate predictor: groundwater age (Nolan et al., 2015; Wells et al., 2018; Malakar et 

al., 2023). Depth to the screened interval shows a negative relationship with nitrate concentration. 

 

Figure 6. Distribution of Domestic Well Depth Among Active, Registered Wells in Nebraska. 
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Figure 7. Nitrate Concentration in Milligrams per Liter (mg/L) and Depth to the Mid-Point of the Screened Interval in Feet (ft). 

Land-Use 
The CDL was evaluated for changes over time at the Township scale across the state (Figure 8) using the R 

package ggplot2 (Wickham, 2016). Significant changes were not seen between the major classes (grassland, 

corn, soy) over the study area since the initial release of the 2008 product. Additionally, around 80% of corn 

and soy acres appear to be in rotation with each other over the study period and these two should be 

considered a linked class. Corn shows similar correlation with the percentage of irrigated land and the historic 

fertilizer application rate. See a correlation matrix of the land use inputs in Figure 9 where Pearson’s R values 

are plotted on the right diagonal (Sokal et al., 1969). A combined CornSoy class is shown illustrating the close 

relationship between the two factors. While factor independence is not a required assumption of BRTs (Elith et 

al., 2008), collinear factors do influence the variable influence and interactions in the model (Dormann et al., 

2013). 
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Figure 8. Cropland Data Layer Largest Land-Use Classes. 
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Figure 9. Correlation Matrix for Land Use Variables Considered for or Included in the Model.
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Results & Discussion 
Model predictions in probability terms were converted to binary values and compared with the training and 

testing data. Probability values of above 0.5 were treated as a prediction of one and equal to or below 0.5 as 

zero for mapping and confusion matrix calculations. 

Models were tuned by varying the learning rate (from 0.001 to 0.1), tree complexity (from 3-5), and number of 

trees (from 100-15,000). Once a rough number of trees was established, values of complexity and learning 

rate were optimized. As a rule of thumb, when the complexity was increased by one, the learning rate was 

reduced by approximately one-half. Complexity was varied between three and five. A complexity of five was 

found to optimize all models. Unsurprisingly, optimal complexity was near the square root of the number of 

predictor variables (22). See table 5 for a summary of the model parameters after tuning. 

Table 5. Model Parameters Used in each Tuned BRT Model.  

Model Number of Trees Tree Complexity Learning Rate 

GBM-MCL (MCL) 8600 5 0.008 

GBM10.18 (Elevated) 12100 5 0.005 

GBM10.19 (Background) 13600 5 0.007 

Table 6 summarizes diagnostic statistics for the models separated by training and testing data. Model 

sensitivity for the training data ranged between 76-97% with the highest sensitivity for classifying wells above 

the background level. For the testing data, sensitivity ranged from 55-88%. Again, the highest sensitivity was 

achieved classifying wells above the 3 mg/L background. Overall accuracy was high across the board, ranging 

from 75-91% in the testing and training data. 

MCC values evaluated from the training data ranged between 0.74 and 0.82 indicating very strong (0.7 – 1.0) 

agreement between predictions and observations. In the testing data, MCC values ranged from 0.50 – 0.51 

indicating strong agreement (0.4 – 0.69) between testing data and model predictions. 

Table 6. Model Diagnostic Statistics. 

Model Diagnostic 
Statistics Model 

Specificity (0) Sensitivity (1) Accuracy MCC 

 Training Data 

GBM-MCL (MCL) 97% 76% 91% 0.78 

GBM10.18 (Elevated) 86% 88% 87% 0.74 

GBM10.19 
(Background) 

82% 97% 92% 0.82 

 Testing Data 

GBM-MCL (MCL) 92% 55% 81% 0.51 

GBM10.18 (Elevated) 72% 78% 75% 0.51 

GBM10.19 
(Background) 

59% 88% 78% 0.50 

Variable influence is plotted in Figure 10 for the GBM-MCL model. Variable influence, partial dependence, and 

variable interaction plots were roughly equivalent across models, results are reported for GBM-MCL and are 

representative of the other models. Across models the most influential factors were well location (lat/long) and 

soil infiltration rate (ksat). Variables with many null values – like depth to the midpoint of the screened interval 

(Half_ScreenDepth) – have lower influence. Partial dependence plots for the eight most influential factors in 

the GBM-MCL model are shown in Figure 11.  
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Figure 10. Relative Percent Variable Influence for the 22 Predictor Variables in the GBM-MCL Model. 

 

Figure 11. Partial Dependence Plots for the Eight Most Influential Variables in GBM-MCL. 

Based on the variable influence and partial dependence plots, intensive agricultural land-use is a strong 

predictor of nitrate risk. Corn and soy should be considered a linked class based on crop rotation patterns in 
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Nebraska and the shape of their response supports this. Location, as measured by latitude and longitude, was 

consistently identified across models as a strong predictor with about 20% variable influence. This is 

unsurprising, given historic land-use patterns are strongly linked to nitrate levels in groundwater. Soil infiltration 

was another factor closely linked to estimated nitrate risk as expected. In general, nitrate risk increases with 

increasing ksat, but plateaus after a steep increase between 50 – 100 micrometers/second. Well depth had a 

negative relationship with nitrate risk. Shallower wells were more likely to be classified as high-risk, with the 

highest risk estimated in wells 50 feet or less in depth. 

Variable interactions between land use trends and soil infiltration rate appear strong in the GBM-MCL model 

predicting against the MCL. Figure 12 shows the surface plot of predicted probability (z-axis) based on ksat 

and the percentage of irrigated land around each well. Figure 13 shows this interaction in two-dimensions, 

where more intense color indicates a higher predicted probability.  

 

Figure 12. GBM-MCL Variable Interaction Surface Plot for Mean Soil Infiltration Rate and Percentage Irrigated Land. 
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Figure 13. GBM-MCL Perspective Plot. 

Physically, this interaction suggests that wells in heavily irrigated areas are at a higher risk of elevated nitrate 

levels if the soil infiltration rate is also above 50 micrometers per second. This relationship dips at high soil 

infiltration rates, suggesting soils that are unproductive for farming. It may also suggest that marginal soils on 

either end of the drainage spectrum receive comparably more inputs. Figure 14 plots the interaction between 

historic fertilizer rate and soil infiltration which supports this assertion. Correlation between other crop 

predictors such as corn, soy, historic fertilizer application, and irrigated land may be muting this relationship. 
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Figure 14. GBM-MCL Variable Interaction Plot Between Estimated Likelihood Soil Infiltration Rate and Historic Application Rate. 

Model predictions were exported from R and mapped using ArcGIS Pro. Figure 15 plots the predicted and 

observed results from the GBM-MCL testing data. Light blue triangles are true positives, dark blue triangles are 

true negatives, orange x’s are false positives, and red x’s are false negatives. False negatives are rendered 

first in the figure, and it should be noted that at this scale the wells appear much closer together than they are. 

Mapping the results reveals that the model generalizes wells across Nebraska with the apparent exception of 

the Paleo Valley Aquifer systems.  
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Figure 15. GBM-MCL Testing Results. 

Generalizing Model Results for the NDEE Domestic Well Risk Assessment Tool 
Results from the three trained models were generalized across the state. First, predictor variables were 

aggregated into a half-mile grid surface covering the State of Nebraska, then the trained models were used to 

predict to that surface, and finally the predictions were mapped for incorporation into the tool. Figure 16 shows 

the composite model results as they are queried by the GIS tool. Areas in red are more likely than not to 

exceed the MCL, areas in orange are more likely than not to exceed the elevated concentration, areas in 

yellow are more likely than not to exceed the background concentration, and areas in green are more likely 

than not to fall below the background concentration. A fully independent set of testing data from the NDEE free 

private domestic well sampling effort was used to evaluate the performance of the gridded model predictions.  
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Figure 16. Predictive Nitrate Model Results: Composite Layer in Terms of Nitrate Concentration. 

Model Predictions Compared to NDEE Private Domestic Sampling Effort Results 
In addition to testing data (data not used in model training), model performance was evaluated against 

samples collected by private domestic well owners as a part of the 2023-2024 NDEE water quality study free 

private domestic well nitrate sampling effort. Because these were not used to train the models, they represent 

a fully independent testing set. This test estimates how well the model predictions generalized to the half-mile 

grid surface will perform in the GIS tool. Table 7 summarizes the metrics for each surface. Results are also 

plotted in Figure 17 to visualize how the model results compare to the independent dataset. 

Based on testing, it was found that aggregating the variables into an arbitrary grid ‘weakened’ model efficacy 

by generally under-estimating probability of exceeding each threshold concentration when compared to the 

fully independent private domestic well data (MCC=0.13 – 0.28). Classification thresholds were systematically 

reduced (in increments of 0.05) on the grid surface to optimize predictive accuracy and provide a conservative 

estimate of risk. By adjusting the cutoff value from 0.5 to 0.25 for the MCL model, from 0.5 to 0.35 for the 

elevated model, and from 0.5 to 0.45 for the background model, comparison to the private domestic well 

samples were acceptable (MCC=0.20 – 0.28) and more in line with a comparison between the gridded surface 

and the testing data (MCC=0.40 – 0.44).  

Figure 17 shows a comparison between the MCL predictions and the private domestic samples by outcome. 

Location information for these wells is based on the street address provided by well owners and then 

geocoded using ArcGIS Pro (Version 3.1). Addresses matching P.O. boxes, Points of Interest, and Street 

centerlines were removed for evaluation metric calculations. Addresses that requested more than one sample 

kit were also removed as some owners tested before and after treatment units or for multiple properties. Areas 

in darker blue on Figure 17 correspond to higher probability of exceeding the MCL. Figure 18 summarizes the 
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results of the MCL comparison with the domestic samples by classification category. Figures for the elevated 

and background surfaces are available in the supplemental model material.  

Table 7. Diagnostic Statistics based on Comparing the Gridded Model Predictions to the Domestic Samples from the 2023-2024 
Domestic Well Sampling Effort. 

Metric → 
 

Model-Surface ↓ 
Specificity (0) Sensitivity (1) Accuracy MCC 

 2024 Domestic Well Testing Data 

GBM-MCL (MCL) 87% 34% 79% 0.20 

GBM10.18 (Elevated) 75% 52% 68% 0.26 

GBM10.19 
(Background) 

68% 60% 65% 0.28 

  



   

 

29 

 

Figure 17. Predictive Nitrate Model Results: Half-Mile Grid Surface for GIS tool. 

 

Figure 18. MCL Prediction Surface Compared to Domestic Well Samples by Result Classification. 
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Limiting Training Data 
While BRTs are robust to null values for predictor variables and strongly related predictors, the influence of 

variables with missing values is systemically lowered. Preliminary testing that limited the dataset to only 

complete records and a limited number of collinear factors yielded interesting results (Figure 19). Depth to the 

midpoint of the screened interval became much more influential to the model predictions. Land-use influence 

was distributed mostly to the percentage of irrigated lands and the historic application rate. Ksat and well 

location were still key factors. 

Modeling was repeated on a subset of the training data (n=1,559) where no factor contained null values. The 

results were overall in line with the models, with some differences in variable influence and interactions. For 

instance, in GBM-MCL no-NULL, the depth to the mid-point of the screened interval increased 900% in 

variable influence (Figure 19). This would indicate that screen depth is a stronger predictor than well depth, as 

expected, because it better estimates groundwater age. Figure 19 also illustrates the way that null values mute 

the variable influence measure. Low influence does not equal low impact. It may just indicate low coverage of a 

given predictor. Static water level and pumping water level increased by 200-250% by removing wells with null 

values from the training data. 

Reducing the training set reduced the ability of the models to generalize, which was reflected in lower MCC 

values (0.41-0.45) when compared with the BRTs (0.5-0.51). Accuracy and sensitivity were also around 5% 

lower across the board for the testing data when using the limited training set. This is not particularly surprising 

given the data-hungry nature of ML methods and the steep reduction in class examples (from more than 

13,000 to 1,559). 

 

Figure 19. Relative Percent Variable Influence in the GBM-MCL Model with no NULL Factors.  
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Conclusions & Recommendations 
In this study, three BRT models were trained to predict the probability that median nitrate concentration in a 

private domestic well would exceed water quality thresholds based on the available model inputs aggregated 

within 1500-meters of each well modeled. Input variables representing land-use, hydrogeologic factors, point 

sources, well construction details, and nitrate samples collected from 2003-2019 were used to train the model. 

Threshold values of 3 mg/L, 5 mg/L, and 10 mg/L were modeled to represent the background, elevated, and 

the SDWA MCL for nitrate, respectively.  

Predictor variables used to train the BRTs were aggregated into a half-mile grid surface across Nebraska and 

model predictions were made for each grid cell to generalize models for the internal NDEE GIS tool. 

Predictions were only based on the input data listed in the model card, and it is important to note that this is not 

a complete accounting of the variables that could impact nitrate concentrations in a given well. Overall, the 

evaluation statistics for the models were strong, with MCC values between 0.5 and 0.51 for the testing data, 

and acceptable (MCC=0.20 – 0.28) when the gridded predictions were compared to the fully independent 

private domestic well sample set for use in the GIS tool. Overall model accuracy was high in the training and 

testing data (71 – 91%), and the estimates generalized acceptably to the private domestic well data collected 

during the 2023-2024 NDEE free private domestic well sampling effort (68 – 87% overall accuracy). Evaluation 

metrics from the training data indicate that models were well optimized, though additional predictor data, more 

complete predictor data coverage, and additional nitrate samples will almost certainly improve future modeling 

efforts. 

False negatives (underprediction of nitrate concentration) are of greater concern than false positives for this 

study. NDEE intends to use the model internally and with key partners. Decision makers should note that a 

high false negative rate suggests the model generally underestimates risk of exceeding the MCL. GBM-MCL 

model sensitivity was 55%, with an overall accuracy of 81%. The testing specificity was very high – 92%, 

however the false negative rate of 45% could be improved with future work. Values compare favorably to those 

reported by Nolan (2014) and Wheeler and Nolan (2015) for nitrate prediction. GBM-MCL performance was 

comparable to Lombard (2021) in a similar study exploring arsenic MCL exceedances. From a regulatory 

perspective, it can be argued that predicting where nitrate is not likely to exceed the MCL is just as important 

as predicting where it is likely to exceed the MCL. Ultimately, testing the water is the only way to know the 

concentration for certain. When the predicted surface for the GBM-MCL model was compared to the private 

domestic well data collected during the water quality study (a fully independent test set) the results were 

acceptable, with 47% sensitivity and an overall accuracy of 73%.  

Several insights about the relationship between nitrate and contributing factors can be taken away from the 

model. Variable influence and partial dependence plots show that well location, intensive agricultural land-use, 

irrigation, and high soil infiltration rates are strongly related to the level of nitrate in groundwater. This is 

consistent with other research demonstrating that shallow wells in high infiltration soils sited in areas where 

there is significant nitrogen surface loading are at the highest risk of nitrate contamination (Spalding and Exner, 

1993; Spalding, 2001; Litke, 2001; Exner, 2014; Nolan et al., 2014; Davis et al., 2015; Wheeler et al., 2015; 

Garcia et al., 2017). At the scale of this modeling, point source impacts from nitrate were less influential to the 

nitrate risk of a given private domestic well than expected. However, it is nearly certain that variable 

aggregation, missing point source data, and data coverage issues play a large role in muting the signal from 

these sources. This modeling does not support the assertion that point sources do not impact nitrate levels in 

private domestic wells. Until recent decades, OWT systems like septic tanks were not permitted by the state or 

tracked. Like private domestic wells, there are likely thousands of unregistered OWT systems. Livestock 

operations data used to train the model only covers facilities regulated by Title 130, and as such is not a 

complete record of animal operations in the state. Smaller facilities, which are not permitted, are not included in 

the AFO data used to train the model. Livestock watering-well data may partially capture these facilities but is a 

proxy measure. Animal units, a common measure to generalize livestock counts across species, could be 



   

 

32 

incorporated into future modeling to better reflect the size differences between operations, which directly 

impacts the loading rate. 

Livestock operation density, nearby onsite treatment systems, and municipal boundaries were all significant 

factors, but were not as strongly predictive as crop variables or well location. The significance of well location 

to nitrate predictions is unsurprising, considering areas like the Upper Elkhorn River Basin have reported 

elevated nitrate concentrations since at least the 1970s (Spalding and Engberg, 1978), and increasing 

concentrations have been reported across the state as far back as 1930 (Litke, 2001; McMahon et al., 2007). 

Location reflects history, and the legacy nature of the nitrate issue in Nebraska. Location is also reflective of 

local geology and site conditions that likely boost its significance as a factor. 

Future modeling efforts could better incorporate additional point source datasets which may more fully capture 

these impacts. Limited data on unregistered facilities discussed above, or facilities that do not require 

permitting, are likely reducing the impact of point source data in the model. This data gap could also be a 

contributor to the relatively high false negative rate (45%) of the GBM-MCL model. Data on release 

assessments and storage facilities for nitrogen precursors such as ammonia and fertilizer tier two facilities 

regulated by NDEE could be incorporated into future modeling efforts and may more completely capture the 

potential sources around each well. 

Since 2010, an additional million acres of corn have been cultivated in the state and there is evidence that 

trends in fertilizer efficiency have plateaued (Ferguson, 2024). Future modeling could incorporate more classes 

from the CDL and explore other years to see what potential differences may arise in the data. Fertilizer and 

irrigation vary based on crop, and it is possible additional classes would improve the modeling. Across the 

state, the time it takes for this surface loading to reach groundwater varies from years to decades (Wells et al., 

2018; Malakar et al., 2023). Future modeling efforts could better address the differences in transport time by 

broadly grouping wells based on soil characteristics as in Exner 2014. Another option would be to model wells 

in distinct groundwater regions, such as major aquifer units delineated by USGS or UNL CSD. 

At time of the analysis – the public Clearinghouse for nitrate sample data does not have a complete sample 

record for the years 2020 to 2023. These models should be re-evaluated and trained when that data becomes 

available. BRTs, like other machine learning methods, benefit from large datasets (Breiman et al., 1984). While 

it is not expected that these data would change the variable influence or conclusions of this report, they would 

likely improve accuracy by virtue of providing more class examples to train models. 

Well construction information was not available for all nitrate samples included in the analysis. While BRTs are 

robust to missing data, the variable influence is strongly impacted by missing values as seen in the discussion 

section. Future modeling could incorporate more of this well data. Variables representing meteorological 

factors, such as average annual precipitation, soil geochemical variables, and vadose zone transport rates 

have been valuable to other studies predicting water quality in domestic wells (Wheeler et al., 2015, Lombard 

et al., 2021). Additional SSURGO variables that could benefit the models include available water capacity, 

clay, sand, and silt content, soil organic matter, hydrologic group, drainage class, depth to bedrock geology, 

water table depths, conductivity, and pH value. Further work should incorporate this data into predicting nitrate 

levels in Nebraska. Annual precipitation data could come from the High Plains Regional Climate Center or 

NOAA. These data would improve model results and in turn the efficacy of the internal NDEE GIS tool. 

Groundwater elevation was another variable not directly included in the model. However, variables such as 

well depth, static water level, pumping water level, and ½ the screened interval depth, indirectly capture the 

groundwater elevation. A groundwater elevation product, based on the regional groundwater models managed 

by NDNR, was developed as a part of the water quality study. Future modeling could incorporate this product 

directly. A more up-to-date accounting of fertilizer application rates and land-application sites could improve 

future modeling results. The Lower Loup Natural Resources District produced a GIS product that linked 
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Confined Animal Feed Operations (CAFOs) to their land application sites as permitted by NDEE. NDEE could 

explore developing a statewide product which could improve modeling efforts and management. 

Vertical flow rates within each aquifer are influential to the stratification of nitrate concentrations in groundwater 

(Snow and Miller, 2018; Malakar et al., 2023). Transport rates could be derived from each of the regional 

groundwater models (as they are updated and improved) and have been valuable to other modeling efforts like 

Nolan 2015. As a model input, vertical transport rate through the aquifer would more directly capture the 

varying timescales it takes for nitrate to reach deeper groundwater across the state. Another option to reflect 

the varying transport rates would be group wells by hydrologic region or by aquifer and train regional models. 

This should be explored when the BRTs from this study are updated as additional data becomes available. 

The state should consider developing regional groundwater models that incorporate a nitrogen cycle balance 

such as the one proposed by Garcia et al. (2019), using the coupled Community Multiscale Air Quality 

Bidirectional modeling system developed by USEPA and USDA Environmental Policy Integrated Climate 

(EPIC) agroecosystem model (Pleim and Ran, 2023). Such a system would allow for a much more detailed 

accounting of nitrogen at the surface for management efforts. This could help target efforts to lower 

concentrations in areas where groundwater is a primary source of drinking water. 

Model accuracy is generally highest where there is more available data, such as in the river valleys and 

northeastern portions of the state. In areas with fewer nitrate samples, there are relatively fewer class 

examples to train the model on those locally relevant variables. The next section discusses recommendations 

for how model results should be incorporated into the internal NDEE GIS tool.  

Determining Threshold Values and Risk Level 
Based on the model performance, it is recommended to incorporate the results into the internal NDEE risk 

assessment GIS tool, with important caveats about the limits of these predictions. Each factor in the GIS tool is 

assigned points which are added together to determine an overall risk index. More points correspond with a 

higher risk. Recommended threshold values for incorporating the model into the tool are show in in Table 8. 

Points were assigned to the threshold values shown in Table 9 based on how model predictions relate to 

potential nitrate risk. Each model predicts where nitrate concentrations are likely to exceed the values in the 

table, and points are assigned based on each prediction. Threshold values reported in table 9 were determined 

based on: literature, model performance review, data from the free private domestic well sampling effort, and 

quality assurance procedures conducted by NDEE and project partners. As more data become available, the 

BRTs in this report should be updated and using the recommendations provided in the previous section. 

Updated models could improve the gridded surfaces in the GIS tool and reduce false negative rates. 

Table 8. Threshold Values for the Predictive Nitrate Model Results Incorporated into the GIS Risk-Assessment Tool. 

Predicted 
Nitrate 

Concentration 
Range (mg/L) 

Points 
Assigned  

Minimum  
Probability 
Predicted 

Description 

<3 mg/L 0 0.00 

If the model predicts the input location has a probability of 0.25 
or less of exceeding the MCL, a probability of 0.35 or less of 
exceeding 5 mg/L, and a probability of 0.45 or less of exceeding 
3 mg/L, then the tool assigns zero points for this indicator. 
Language is provided to the user based on the model; it is likely 
that the nitrate level in their well is below background (less than 
3 mg/L).  

>3 mg/L 1 0.45 

If the model predicts the input location has a probability of 0.25 
or less of exceeding the MCL, a probability of 0.35 or less of 
exceeding 5 mg/L, but a probability greater than 0.45 of 
exceeding 3 mg/L, then the tool assigns one point for this 
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Predicted 
Nitrate 

Concentration 
Range (mg/L) 

Points 
Assigned  

Minimum  
Probability 
Predicted 

Description 

indicator. Language is provided to the user that based on the 
model, it is likely that the nitrate level in their well is above 
background but below elevated (between 3 and 5 mg/L).  

>5 mg/L 2 0.35 

If the model predicts the input location has a probability of 0.25 
or less of exceeding the MCL, but a probability greater than 0.35 
of exceeding 5 mg/L, then the tool assigns two points for this 
indicator. Language is provided to the user that based on the 
model, it is likely that the nitrate level in their well is elevated 
(between 5 and 10 mg/L).  

> 10 mg/L 3 0.25 

If the model predicts the input location has a probability greater 
than 0.25 of exceeding the MCL, then the tool assigns the 
maximum number of points (three) for this indicator. In the GIS 
tool, language is provided to the user that based on the model, it 
is likely that nitrate level in their well exceeds the MCL (10 
mg/L). 
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